Bioengineering: Biosystems (BE29)
Triton Day 2023 Information Packet
Packet Contents

1. Major Flowchart
2. Major Requirement Course Descriptions
3. Additional Courses for Medical School
4. Frequently Asked Questions
 I. Advanced Placement Course Information
 II. Technical Elective (TE) Course Policy
 III. 5 Year Bachelors/Masters Program
 IV. Research Labs
5. Undergraduate Student Resources

The UCSD Department of Bioengineering

Mission Statement

To provide our students with an excellent education that enables successful, innovative, and lifelong careers in bioengineering industries and professions.

Student Learning Outcomes

Upon completion of the Bioengineering Program, graduates in Bioengineering; Biotechnology; Bioengineering: BioSystems; and Bioengineering: Bioinformatics are expected to have the desired knowledge, skills, attitudes, and behaviors as indicated below.

- An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- An ability to communicate effectively with a range of audiences.
- An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
- An ability to develop innovative thinking to solve bioengineering problems with creativity and entrepreneurship.

Academic Integrity and Research Ethics

The overall mission of the Dept. of Bioengineering is to provide students with an education that enables successful, innovative, and lifelong careers in bioengineering industries and professions, including a recognition of professional and social responsibilities, and sensitivity to ethical and health-related issues.

The UCSD Policy on Academic Integrity states the general rules for student integrity. It establishes the standards that apply to academic course work undertaken by all undergraduate and graduate students of this University. The policy is based on the fundamental tenet that the principle of honesty must be upheld if the integrity of scholarship is to be maintained by an academic community.
Biosystems Major Requirements
(Note: All course descriptions and prerequisites are from the 2022-23 Catalog.)

Freshman Year Courses

Fall Quarter
MATH 20A. Calculus for Science and Engineering (4) Foundations of differential and integral calculus of one variable. Functions, graphs, continuity, limits, derivative, tangent line. Applications with algebraic, exponential, logarithmic, and trigonometric functions. Introduction to the integral. (Two credits given if taken after MATH 1A/10A and no credit given if taken after MATH 1B/10B or MATH 1C/10C. Formerly numbered MATH 2A.) Prerequisites: Math Placement Exam qualifying score, or AP Calculus AB score of 3 (or equivalent AB subscore on BC exam), or SAT II MATH 2C score of 650 or higher, or MATH 4C or MATH 10A.

BENG 2. Introductory Computer Programming and MATLAB (2) (Conjoined with BENG 291.) Instills skills for personal and organizational development during lifelong learning. Student prepares portfolio of personal attributes and experiences, prepares for career interviews plus oral report of interviewing organizational CEO. Graduate students will prepare a NIH small business research grant. Prerequisites: consent of instructor. (F)

CHEM 6A. General Chemistry I (4) First quarter of a three-quarter sequence intended for science and engineering majors. Topics include atomic theory, bonding, molecular geometry, stoichiometry, types of reactions, and thermochemistry. May not be taken for credit after CHEM 6AH. Recommended: proficiency in high school chemistry and/or physics. Corequisite: MATH 10A or 20A or prior enrollment.

Winter Quarter
CHEM 6B. General Chemistry II (4) Second quarter of a three-quarter sequence intended for science and engineering majors. Topics include covalent bonding, gases, liquids, and solids, colligative properties, physical and chemical equilibria, acids and bases, solubility. May not be taken for credit after CHEM 6BH. Prerequisites: CHEM 6A or 6AH and MATH 10A or 20A. Recommended: concurrent or prior enrollment in MATH 10B or 20B.

BENG 1. Introduction to Bioengineering (2) An introduction to bioengineering that includes lectures and hands-on laboratory for design projects. The principles of problem definition, engineering inventiveness, team design, prototyping, and testing, as well as information access, engineering standards, communication, ethics, and social responsibility will be emphasized. P/NP grades only. Prerequisites: none. (W)

MATH 20B. Calculus for Science and Engineering (4) Integral calculus of one variable and its applications, with exponential, logarithmic, hyperbolic, and trigonometric functions. Methods of integration. Infinite series. Polar coordinates in the plane and complex exponentials. (Two units of credits given if taken after MATH 1B/10B or MATH 1C/10C.) Prerequisites: AP Calculus AB score of 4 or 5, or AP Calculus BC score of 3, or MATH 20A with a grade of C– or better, or MATH 10B with a grade of C– or better, or MATH 10C with a grade of C– or better.

PHYSICS 2A. Physics–Mechanics (4) A calculus-based science-engineering general physics course covering vectors, motion in one and two dimensions, Newton’s first and second laws, work and energy, conservation of energy, linear momentum, collisions, rotational kinematics, rotational dynamics, equilibrium of rigid bodies, oscillations, gravitation. Students continuing to PHYS 2B/4B will also need MATH 20B. Prerequisites: MATH 10A-B or 20A or 20B or 20C or 31BH. Recommended preparation: prior or concurrent enrollment in MATH 20B.

Spring Quarter
MATH 20C. Calculus and Analytic Geometry for Science and Engineering (4) Vector geometry, vector functions and their derivatives. Partial differentiation. Maxima and minima. Double integration. (Two units of credit given if taken after MATH 10C. Credit not offered for both MATH 20C and 31BH. Formerly numbered MATH 21C.) Prerequisites: AP Calculus BC score of 4 or 5, or MATH 20B with a grade of C– or better.

PHYSICS 2B. Physics–Electricity and Magnetism (4) Continuation of PHYS 2A covering charge and matter, the electric field, Gauss’s law, electric potential, capacitors and dielectrics, current and resistance, electromotive force and circuits, the magnetic field, Ampere’s law, Faraday’s law, inductance, electromagnetic oscillations, alternating
currents and Maxwell’s equations. Students continuing to PHYS 2C will also need MATH 20C or 31BH.

Prerequisites: PHYS 2A or 4A and MATH 20B or 20C or 31BH. Recommended preparation: prior or concurrent enrollment in MATH 20C or 31BH.

PHYS 2BL. Physics Laboratory—Mechanics (2) Experiments include gravitational force, linear and rotational motion, conservation of energy and momentum, collisions, oscillations and springs, gyroscopes. Data reduction and error analysis are required for written laboratory reports. One hour lecture and three hours laboratory. **Prerequisites:** PHYS 2A or 4A. Recommended preparation: prior or concurrent enrollment in PHYS 2B or 4C.

ECE 35. Introduction to Analog Design (4) Fundamental circuit theory concepts, Kirchhoff’s voltage and current laws, Thévenin’s and Norton’s theorems, loop and node analysis, time-varying signals, transient first order circuits, steady-state sinusoidal response. MATH 20C and PHYS 2B must be taken concurrently. Program or materials fees may apply. **Prerequisites:** MATH 18, 20A–B, and PHYS 2A.

Sophomore Year Courses

Fall Quarter

ECE 45. Circuits and Systems (4) Steady-state circuit analysis, first and second order systems, Fourier Series and Transforms, time domain analysis, convolution, transient response, Laplace Transform, and filter design. **Prerequisites:** ECE 35.

MATH 20D. Introduction to Differential Equations (4) Ordinary differential equations: exact, separable, and linear; constant coefficients, undetermined coefficients, variations of parameters. Systems. Series solutions. Laplace transforms. Techniques for engineering sciences. Computing symbolic and graphical solutions using Matlab. (Formerly numbered MATH 21D.) May be taken as repeat credit for MATH 21D. **Prerequisites:** MATH 20C (or MATH 21C) or MATH 31BH with a grade of C— or better.

PHYSICS 2C. Physics—Fluids, Waves, Thermodynamics, and Optics (4) Continuation of PHYS 2B covering fluid mechanics, waves in elastic media, sound waves, temperature, heat and the first law of thermodynamics, kinetic theory of gases, entropy and the second law of thermodynamics, Maxwell’s equations, electromagnetic waves, geometric optics, interference and diffraction. Students continuing to PHYS 2D will need MATH 20D. **Prerequisites:** PHYS 2A or 4A, and MATH 20C or 31BH. Recommended preparation: prior or concurrent enrollment in MATH 20D. Prior completion of PHYS 2B is strongly recommended.

PHYS 2CL. Physics Laboratory—Electricity and Magnetism (2) Experiments on L-R-C circuits; oscillations, resonance and damping, measurement of magnetic fields. One hour lecture and three hours laboratory. Program or materials fee may apply. **Prerequisites:** PHYS 2A or 4A, and 2B or 4C. Recommended preparation: prior or concurrent enrollment in PHYS 2C or 4D.

Winter Quarter

MATH 18. Linear Algebra (4) Matrix algebra, Gaussian elimination, determinants. Linear and affine subspaces, bases of Euclidean spaces. Eigenvalues and eigenvectors, quadratic forms, orthogonal matrices, diagonalization of symmetric matrices. Applications. Computing symbolic and graphical solutions using Matlab. Students may not receive credit for both MATH 18 and 31AH. **Prerequisites:** Math Placement Exam qualifying score, or AP Calculus AB score of 3 (or equivalent AB subscore on BC exam), or SAT II Math Level 2 score of 650 or higher, or MATH 4C, or MATH 10A, or MATH 20A. Students who have not completed listed prerequisites may enroll with consent of instructor.

BENG 120. Organic Chemistry Structural and Design Principles (4) Structural and design principles of carbon compounds. Structure and stereochemistry. Functional groups and chemical transformations. Structure and design principles of biomolecules. Molecules of life and their organization. **Prerequisites:** CHEM 6A and 6B; majors only or consent of department. (W)

Spring Quarter

MATH 20E. Vector Calculus (4) Change of variable in multiple integrals, Jacobian, Line integrals, Green’s theorem. Vector fields, gradient fields, divergence, curl. Spherical/cylindrical coordinates. Taylor series in several variables. Surface integrals, Stoke’s theorem. Gauss’ theorem. Conservative fields. **Prerequisites:** MATH 18 or MATH 20F or MATH 31AH and MATH 20C (or MATH 21C) or MATH 31BH
with a grade of C– or better.

BENG 102. Molecular Components of Living Systems (4) Introduction to molecular structures. Macromolecules and assemblies—proteins, nucleic acids, and metabolites. Principles of design of simple and complex components of organelles, cells, and tissues. **Prerequisites:** BENG 120 or consent of department. (S)

BENG 100. Introduction to Bioengineering Design (4) General introduction to probability and statistical analysis, applied to bioengineering design. Topics include preliminary data analysis, probabilistic models, experiment design, model fitting, goodness-of-fit analysis, and statistical inference/estimation. Written and software problems are provided for modeling and visualization. **Prerequisites:** BENG 1, MATH 18 or MATH 31AH or MATH 20F, MATH 20C or MATH 31BH, and MATH 20D, and PHYS 2A-B-C, or consent of department. (S)

Junior Year Courses

Fall Quarter

BENG 110. Musculoskeletal Biomechanics (4) Statics, dynamics, and solid mechanics of hard and soft musculoskeletal tissues. Forces, moments, static equilibrium, kinematics, kinetics applied to human mechanics, and movement. Stress, strain, and material properties of musculoskeletal tissues. Problem solving and design in biomechanics. **Prerequisites:** MATH 20D, MATH 20E or MATH 31CH, MATH 18 or MATH 31AH; PHYS 2C, or consent of department. (F)

BENG 134. Measurements, Statistics and Probability (4) A combined lecture and laboratory course that provides an introductory treatment of probability theory, including distribution functions, moments, and random variables. Practical applications include estimation of means and variances, hypothesis testing, sampling theory, and linear regression. **Prerequisites:** MATH 20D and MATH 18 or MATH 31AH; BENG 100 or consent of department. (F)

Winter Quarter

BENG 152. Biosystems Engineering Laboratory (4) Experimental study of real and simulated systems and their controls (examples will include electrical, biological, and biomechanical systems). Projects consist of identification, input-output analysis, design, and implementation of analog controls. Laboratory examples will include electrical circuit design and analysis, analysis of living tissues such as bone, analysis and manipulation of cells (bacteria in chemostat). Program or materials fees may apply. **Prerequisites:** BENG 102; bioengineering: biosystems majors only or consent of department. (W)

BENG 130. Biotechnology Thermodynamics and Kinetics (4) An introduction to physical principles that govern biological matter and processes, with engineering examples. Thermodynamic principles, structural basis of life, molecular reactions and kinetics, and models to illustrate biological phenomena. **Prerequisites:** CHEM 6B, MATH 20A, 20B, 20D, PHYS 2A, 2B, 2C; majors only or consent of department. (W)

BENG 186B. Principles of Bioinstrumentation Design (4) Biophysical phenomena, transducers, and electronics as related to the design of biomedical instrumentation. Potentiometric and amperometric signals and amplifiers. Biopotentials, membrane potentials, chemical sensors. Electrical safety. Mechanical transducers for displacement, force, and pressure. Temperature sensors. Flow sensors. Light-based instrumentation. **Prerequisites:** ECE 35 or MAE 40; ECE 45 or MAE 170; or consent of department. (W)

BENG 140A. Bioengineering Physiology I (4) Introductory mammalian physiology for bioengineering students, with emphasis on control mechanisms and engineering principles. Basic cell functions; biological control systems;
muscle; neural; endocrine, and circulatory systems. Not intended for premedical bioengineering students. Credit not allowed for both BIPN 100 and BENG 140A. **Prerequisites:** CHEM 6A-B, PHYS 2A-B-C, BILD 1, or BENG 102; majors only or consent of department. (W)

Spring Quarter

BENG 187A. Bioengineering Design Project: Planning (1) General engineering design topics including project planning and design objectives, background research, engineering needs assessment, technical design specifications, engineering standards, and design requirements and constraints. Introduction to biomedical and biotechnology design projects. Career and professional advising. Majors must enroll in the course for a letter grade in order to count the sequence toward the major. No exceptions will be approved. **Prerequisites:** BENG 112A or BENG 152 or BENG 168; bioengineering, bioengineering: biotechnology, or bioengineering: biosystems majors only or consent of department. (S)

BENG 133. Numerical Analysis and Computational Engineering (4) Principles of digital computing, including number representation and arithmetic operations. Accuracy, stability, and convergence. Algorithms for solving linear systems of equations, interpolation, numerical differentiation, and integration and ordinary differential equations. **Prerequisites:** MATH 20D and 18 or consent of department. (S)

BENG 140B. Bioengineering Physiology II (4) Introductory mammalian physiology for bioengineering students, with emphasis on control mechanisms and engineering principles. Digestive, respiratory, renal, and reproductive systems; regulation of metabolism, and defense mechanisms. (Credit not allowed for both BIPN 102 and BENG 140B.) **Prerequisites:** BENG 140A; majors only or consent of instructor. (S)

Senior Year Courses

Fall Quarter

BENG 187B. Bioengineering Design Project: Development (1) Development of an original bioengineering design for solution of a problem in biology or medicine. Analysis of economic issues, manufacturing and quality assurance, ethics, safety, design constraints, government regulations, and patent requirements. Oral presentation and formal engineering reports. Career and professional advising. Majors must enroll in the course for a letter grade in order to count the sequence toward the major. No exceptions will be approved. **Prerequisites:** BENG 187A; concurrent enrollment in one of BENG 119A, BENG 126A, BENG 127A, BENG 128A, BENG 129A, BENG 139A, BENG 147A, BENG 148A, BENG 149A, BENG 169A, or BENG 179A; bioengineering, bioengineering: biotechnology, or bioengineering: biosystems majors only or consent of instructor. (F)

BENG 122A. Biosystems and Control (4) Systems and control theory applied to bioengineering. Modeling, linearization, transfer functions, Laplace transforms, closed-loop systems, design and simulation of controllers. Dynamic behavior and controls of first and second order processes. PID controllers. Stability. Bode design. Features of biological controls systems. A simulation project using Matlab and an oral presentation are required. Credit not allowed for both ECE 101 and BENG 122A. **Prerequisites:** MAE 40 or BENG 134 or consent of department. (F)

Winter Quarter

BENG 187C. Bioengineering Design Project: Implementation (1) Approaches to implementation of senior design project, including final report. Teams will report on construction of prototypes, conduct of testing, collection of data, and assessment of reliability and failure. Majors must enroll in the course for a letter grade in order to count the sequence toward the major. No exceptions will be approved. **Prerequisites:** BENG 187B; concurrent enrollment in one of the following lab sections: BENG 119B, BENG 126B, BENG 127B, BENG 128B, BENG 129B, BENG 139B, BENG 147B, BENG 148B, BENG 149B, BENG 169B, or BENG 179B; bioengineering, bioengineering: biotechnology, or bioengineering: biosystems majors only or consent of instructor. (W)
Spring Quarter

BENG 187D. Bioengineering Design Project: Presentation (1) Oral presentations of design projects, including design, development, and implementation strategies and results of prototype testing. Majors must enroll in the course for a letter grade in order to count the sequence toward the major. No exceptions will be approved. **Prerequisites:** BENG 187C; bioengineering, bioengineering: biotechnology, or bioengineering: biosystems majors only or consent of instructor. (S)

BENG 125. Modeling and Computation in Bioengineering (4) Computational modeling of molecular bioengineering phenomena: excitable cells, regulatory networks, and transport. Application of ordinary, stochastic, and partial differential equations. Introduction to data analysis techniques: power spectra, wavelets, and nonlinear time series analysis. **Prerequisites:** BENG 122A or BENG 123 or consent of department. (S)

BENG 189. Physiological Systems Engineering (4) Quantitative description of physiological systems, e.g., electrical and mechanical properties of muscle (skeletal and cardiac). Modeling and simulation of properties. Kidney, transport, and models. Neural circuits and models. **Prerequisites:** BENG 133, 134, 135, 140A and 140B, or consent of department. (S)

*BENG 191/291. Senior Seminar I: Professional Issues in Bioengineering (2) (Conjoined with BENG 291.) Instills skills for personal and organizational development during lifelong learning. Student prepares portfolio of personal attributes and experiences, prepares for career interviews plus oral report of interviewing organizational CEO. Graduate students will prepare a NIH small business research grant. **Prerequisites:** consent of instructor. (F)

Two (“A” & “B”) Design Elective Courses (6 units total) - Seniors work in teams on a project to design a solution to a multidisciplinary bioengineering problem suggested by professionals in bioengineering industry, academia, or medicine. Taken Fall and Winter quarter of Senior year.

Two 4-unit Technical Elective courses
Required for all students

*Recommended but not required; may be taken once.

**See departmental Student Affairs Office for additional information.
Additional Courses for Medical School

Biosystems students planning to apply to med school take the following courses in addition major requirements:

1. BILD 1
2. BILD 2
3. BILD 3
4. CHEM 6C
5. CHEM 7L
6. CHEM 41A
7. CHEM 41B
8. CHEM 41C
9. CHEM 43A
10. One of the following: BIBC 100, BIBC 102, CHEM 114A, or CHEM 114B
11. One quarter upper division Biology lab
12. One year of English composition or writing (general education courses dependent on written material for grading should suffice)
13. One course in psychology and sociology (PSYC 1 and SOCI 70) helpful for the MCAT but not a prerequisite
14. Recommended additional coursework
 a. Genetics (BICD 100)
 b. Cell biology (BICD 110)
 c. Molecular Biology (BIMM 100)
 d. Microbiology (BIMM 120)

Most medical schools accept some AP and IB credit for prerequisites. Some medical schools do NOT accept AP/IB credit for prerequisites, and additional upper division coursework may be required. Please consult with a pre-med advisor if you have concerns.

For more information, please visit: https://career.ucsd.edu/plan/explore/pre-health-med/medicine/prepare.html and consider meeting with a pre-med advisor. This information is meant to guide students in planning for a pre-med track, but may not fully encompass all requirements.
Frequently Asked Questions

1. I was not directly admitted into the Bioengineering department. Is there a way that I can change into any of the “capped” majors later on?

Possibly. Freshman students admitted in FALL 2023 will be able to apply “one time only” to a “capped” major in FALL 2024. A certain number (determined on an annual basis) of “continuing” sophomore students who apply will be selected to enter the “capped” Bioengineering, Biotechnology, Bioengineering: Bioinformatics, or the Bioengineering: BioSystems major. Interested continuing students must not be past sophomore standing, as time to graduation would be delayed. You are required to complete the following courses (depending on which major you wish to apply for) prior to applying in FALL 2024:

Bioengineering and Bioengineering: Biotechnology: BILD 1 (biology); CHEM 6AB; MAE 8 (MatLab); Math 20ABC; Physics 2AB.
Bioengineering: Bioinformatics: BILD 1; CHEM 6AB; CSE 11 (or CSE 8A and 8B); MATH 20ABC; PHYS 2AB.
Bioengineering: BioSystems: CHEM 6AB; MATH 20ABC; PHYS 2AB.

If you have met some of the courses by Advanced Placement (“AP”) work, please be advised of the following: A minimum of 3 courses listed must have been completed at UC San Diego. If students can not meet this 3-course minimum due to prior credit, students may offer grades for MATH 20D (Differential Equations), MATH 18 (Linear Algebra) or MATH 20E (Vector Calculus) until the 3 course minimum has been met.

Applications will be available September 23, 2024, and must be submitted by Friday of the second week of instruction - Oct. 4, 2024. Applications will be ranked according to the GPA obtained in the required courses and will be approved, starting with the student having the highest GPA in those courses, until the “open” slots are filled in each of the “capped” majors. Bioengineering Student Affairs staff will notify all applicants re: their status on Wednesday, Oct 9th, 2024.

2. What are the differences among the four majors within the Bioengineering Dept?

Bioengineering (BENG): This major prepares students for careers in the biomedical device industry and for further education in graduate school. Students completing the B.S. degree in Bioengineering have a broad preparation in traditional topics in engineering, allowing for a variety of career pathways. This program addresses the bioengineering topics of biomechanics, biotransport, bioinstrumentation, bioelectricity, biosystems, and biomaterials, and the complementary fields of systems and integrative physiology. Education in these areas allows application of bioengineering and other scientific principles to benefit human health by advancing methods for effective diagnosis and treatment of disease, e.g., through development of medical devices and technologies. The BENG major is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering & Technology [EAC/ABET].

Bioengineering: Biotechnology (BTEC): This major prepares students for careers in the biotechnology industry and for further education in graduate school. The curriculum has a strong engineering foundation with emphasis on biochemical process applications. This program addresses the bioengineering topics of biochemical, metabolism, kinetics, biotransport, biosystems, bioreactors, bioseparations, tissue engineering, and the complementary fields of cellular and molecular biology, with the applications that benefit human health. The BTEC major is accredited by [EAC/ABET].

Bioengineering: Bioinformatics (BINF): Bioinformatics is the study of the flow of information (genetic, metabolic, and regulatory) in living systems to provide an understanding of the properties of
cells and organisms. This major has been developed by the Departments of Bioengineering, Chemistry and Biochemistry, Computer Science and Engineering, and Division of Biology. The bioinformatics major in bioengineering emphasizes systems engineering and model-based approaches to interpreting and integrating bioinformatics data. The bioinformatics major prepares students for careers in the pharmaceutical, biotechnology, and biomedical software industries, and for further studies in graduate school. The BINF major is not accredited by a Commission of [EAC/ABET].

Bioengineering: BioSystems (BSYS): This major focuses on the interaction and integration of components in complex biological and engineering assemblages, and how the function and interactions of these components affect overall performance. The major draws on foundations of classical electrical and systems engineering, with biological applications at levels of the molecular and cellular to the physiological and whole organism, and provides an alternative to other bioengineering majors that emphasize mechanical, chemical, and computational approaches. The major prepares students for careers in the bioengineering industry, in research and development, and for further education in graduate, medical, and business schools. The BSYS major is accredited to a [EAC/ABET].

3. **I have received Advanced Placement credit from high school in one or more subjects. Does AP work exempt me from taking specific courses?**

Yes. Depending upon the score you receive on an AP exam, you may be exempt from taking one or more courses required for your major. Please refer to section I below and/or the online UCSD General Catalog.

4. **Is it possible to do research as an undergraduate?**

Yes. As a student with lower-division standing, upon completion of 30 UCSD units with a 3.0 GPA, you may request to work with a faculty member and enroll in a BENG 99 (Independent Study for Undergraduates) course. Additionally, when you achieve upper-division standing and have completed a total of 90 units with a 2.5 GPA, you are encouraged to participate in research with a faculty member by enrolling in a BENG 199 course. Please refer to the Research Labs listing to see an up to date list of our faculty who you may have the option of doing research with.

5. **Can I graduate in four years with a major in the Bioengineering Department?**

Yes. Our department’s major flowcharts are designed to be completed in four years.

6. **Is it possible to complete a minor or double major with a major in Bioengineering?**

Completion of a minor or a double major is not encouraged among the engineering departments. Engineering majors are very rigorous and require a large number of units to be completed. Often a student’s graduation will be delayed if a minor or double major is planned. Students may not complete a minor or double major with another engineering department, per University policy.

7. **How many students are in the Bioengineering Dept?**

Approximately 535 undergraduate students across 4 majors.

8. **Does Bioengineering have a 5-Year BS/MS Program?**

Yes. Please reference section III below.
I. Advanced Placement Course Information

<table>
<thead>
<tr>
<th>Exam and Units for University Credit</th>
<th>UCSD Course Exemptions for Use in Satisfying Bioengineering Major Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology ~ 8 units</td>
<td>Score of 3 = BILD 10; may take BILD 1, 2, 3 for credit</td>
</tr>
<tr>
<td></td>
<td>Score of 4 or 5 = exempts from BILD 1, 2, 3</td>
</tr>
<tr>
<td>Chemistry ~ 8 units</td>
<td>Score of 3 = exempts Chem. 4</td>
</tr>
<tr>
<td></td>
<td>Score of 4 = exempts Chem. 4 or 11; may take Chem. 6A, 6B, 6C for credit</td>
</tr>
<tr>
<td></td>
<td>Score of 5 = exempt from Chem. 6A-B-C; may take Chem. 6AH, 6BH, 6CH for credit. MUST TAKE CHEM 7L.</td>
</tr>
<tr>
<td>Math: Calculus AB ~ 4 units</td>
<td>AB: Score of 3 on AB exam = exempts Math 10A</td>
</tr>
<tr>
<td></td>
<td>AB: Score of 4 or 5 = exempts Math 20A</td>
</tr>
<tr>
<td>Math: Calculus BC ~ 8 units</td>
<td>BC: Score of 3 on BC exam = exempts Math 20A</td>
</tr>
<tr>
<td>(8-unit max for both tests)</td>
<td>BC: Score of 4 or 5 on BC exam = exempts Math 20A and 20B</td>
</tr>
<tr>
<td>Physics:</td>
<td>1 or 2 exam = elective credit and exempt Phys. 10</td>
</tr>
<tr>
<td>Physics 1 or 2</td>
<td>C exam (Mech.) score of 3= exempt Phys. 1A</td>
</tr>
<tr>
<td>Physics C: Mechanics ~ 4 units</td>
<td>C exam (Mech.) score of 4 or 5= exempt Phys 1A or 2A</td>
</tr>
<tr>
<td>Physics C: Electricity and</td>
<td>C exam (E&M) score of 3= exempt Phys. 1B</td>
</tr>
<tr>
<td>Magnetism ~ 4 units</td>
<td>C exam (E&M) score of 4 or 5= exempt Phys 1B or 2B</td>
</tr>
<tr>
<td>(8-unit max for all 3 tests)</td>
<td></td>
</tr>
</tbody>
</table>
II. Technical Elective (TE) Course Policy

All Bioengineering majors must complete 8 units of technical elective credit to satisfy their major requirements. The number of units that must have “engineering” as the primary component depends on the major, as listed below.

<table>
<thead>
<tr>
<th>MAJOR</th>
<th>Total # of TE Units Required</th>
<th>Minimum # of TE Units with Engineering Content Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENG</td>
<td>8</td>
<td>4 units</td>
</tr>
<tr>
<td>BTEC</td>
<td>8</td>
<td>6 units</td>
</tr>
<tr>
<td>BINF</td>
<td>8</td>
<td>8 units</td>
</tr>
<tr>
<td>BSYS</td>
<td>8</td>
<td>8 units</td>
</tr>
</tbody>
</table>

Courses that have “engineering” as its primary component, and are normally approved, include most 4-unit, upper-division (100 series) courses taken for a letter grade, not required for the major and taught in one of the departments of the Jacobs School of Engineering. ALL proposed technical electives must be approved by the Bioengineering Student Affairs office prior to enrollment in the course to verify technical elective credit.

Any portion of the TE requirement not fulfilled by “engineering” courses must be fulfilled by “science” courses. Courses that have “science” as its primary component and are normally approved are 4-unit, upper-division (100 series) courses taken for a letter grade, not required for the major and taught in the departments of Biological Sciences, Chemistry/Biochemistry, or Physics. Courses having a lab component are acceptable.

BENG 199, Independent Study Research courses may also be used toward satisfaction of the TE requirement. Students interested in doing research via BENG 199 courses must enroll with the same faculty member in two quarters of BENG 199. Doing so will satisfy both the TE course requirement and the required engineering component.

“Teams in Engineering Sciences” (TIES) courses may also be used to satisfy the TE requirement for all departmental majors. The ENG 100D and ENG 100L courses are considered as “engineering”-type TE courses. Students will receive 8 units of TE credit after passing 1 quarter of ENG 100D (4 units) taken concurrently with ENG 100L (2 units), and passing 1 additional quarter of ENG 100L (2 units each), thus satisfying the TE course requirements for the major.

BENG 196 may be used to fulfill 4 units of technical elective requirements for all majors. Please see the Student Affairs office for instructions on enrolling in this course. **BENG 197 or BENG 198** courses may not be used to satisfy TE requirements in any majors in the Department of Bioengineering.

Additional Technical Elective Information:
https://bioengineering.ucsd.edu/undergrad/programs/technical-electives
III. 5 Year Bachelors/Masters Degree

The Department of Bioengineering (BENG) offers a five-year process leading to Bachelor of Science and Master of Science degrees in Bioengineering. It is available to undergraduate students who are enrolled in any of the major programs offered by BENG. The purpose of the BS/MS is to allow interested students to obtain the MS degree within one year following completion of the BS degree. The program is open only to UCSD undergraduates and is only for the MS degree, not the M.Eng degree. Application to this program is a two-step process.

Program Information

Twelve units of Bioengineering graduate level courses must be completed during the student’s senior undergraduate year, in addition to the requirements for the bachelor’s degree.

● These twelve units will count toward the requirements for the master’s degree only and must be taken for a letter grade. The student may take up to six graduate level courses during their senior year; six is the maximum that can be transferred per OGS requirements.

The student will arrange a schedule of courses for the senior year that will fulfill the requirements for the BS degree while also serving the program planned for the MS degree. Students are expected to meet the requirements for the MS degree in one year (three consecutive academic quarters) from the date of the receipt of the BS degree.

● Students are encouraged to meet with the Undergraduate and Graduate Coordinators to plan the undergraduate and graduate courses to be taken during the senior year. Enrollment in graduate level courses is done manually and requires authorization from the Graduate Coordinator.

Admission Requirements

To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and have an upper-division GPA of 3.5 or better. However, it should be noted that meeting and even exceeding minimum requirements does not guarantee admission. Students taking a fifth year of undergraduate study are not eligible.

More information: Five-Year BS/MS Program | Shu Chien - Gene Lay Department of Bioengineering
IV. Research Labs

Biodynamics
Bioinformatics and Systems Biology
Biomaterials
Biomaterials and Regenerative Medicine
Cardiac Mechanics
Cardiovascular Disease
Cardiovascular Imaging
Cartilage Tissue Engineering
Composition of Biomolecules
Computational Genomics and Stem Cell Biology
Computational Genomics
Functional Cardiovascular Engineering
Genomics and Systems Biotechnology
Gene Regulation and Imaging
Health and Performance Indicators
Integrated Systems Neuroengineering
Microcirculation
Multiscale Modeling of Pulmonary Arterial Hypertension
Nanoscale Bioengineering
Nanosensors and Devices for Biomedical Systems
Neural Engineering
Optical Bioimaging and Spectroscopy
Stem Cell Biology and Bioengineering Laboratory
Systems Biology and Genetic Circuits
Systems Biology and Disease
Synthetic Biology and Stem Cell Engineering

Jeff Hasty
Shankar Subramaniam
Brian Aguado
Karen Christman
Andrew McCulloch
Francisco Contijoch
Elliot McVeigh
Robert Sah
Rob Knight
Sheng Zhong
Ludmil Alexandrov
Pedro Cabrales
Xiaohua Huang
Bogdan Bintu
Benjamin Smarr
Gert Cauwenberghs
Geert Schmid-Schoenbein
Ester Kwon
Ratnesh Lal
Gabriel Silva
Lingyan Shi
Adam Engler
Bernhard Palsson
Stephanie Fraley
Prashant Mali

See the full list of Bioengineering faculty here: Faculty | Shu Chien - Gene Lay Department of Bioengineering
Undergraduate Student Resources

<table>
<thead>
<tr>
<th>Academic</th>
<th>Well-Being</th>
<th>Cultural/Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioengineering Student Affairs Office</td>
<td>Office for Students with Disabilities (OSD)</td>
<td>Asian, Pacific Islander, Middle Eastern, Desi American Programs and Services (APIMEDA)</td>
</tr>
<tr>
<td>https://bioengineering.ucsd.edu/undergrad/advising</td>
<td>https://osd.ucsd.edu/</td>
<td>https://apimeda.ucsd.edu/</td>
</tr>
<tr>
<td>IDEA Engineering Student Center (Inclusion, Diversity, Excellence, Achievement)</td>
<td>Counseling and Psychological Services (CAPS)</td>
<td>https://svrc.ucsd.edu/</td>
</tr>
<tr>
<td>https://jacobsschool.ucsd.edu/idea/</td>
<td>https://caps.ucsd.edu/</td>
<td>https://itrc.ucsd.edu/</td>
</tr>
<tr>
<td>Academic Internship Program (AIP)</td>
<td>CARE at the Sexual Assault Resource Center (CARE at SARC)</td>
<td>LGBT Resource Center</td>
</tr>
<tr>
<td>https://aip.ucsd.edu/</td>
<td>https://care.ucsd.edu/</td>
<td>https://lgbt.ucsd.edu/</td>
</tr>
<tr>
<td>Study Abroad Office</td>
<td>The Hub Basic Needs Center</td>
<td>Cross Cultural Center</td>
</tr>
<tr>
<td>https://studyabroad.ucsd.edu/</td>
<td>https://basicneeds.ucsd.edu/</td>
<td>https://ccc.ucsd.edu/</td>
</tr>
<tr>
<td>Career Center</td>
<td>Student Health Services</td>
<td>Women’s Center</td>
</tr>
<tr>
<td>https://career.ucsd.edu/</td>
<td>https://studenthealth.ucsd.edu/</td>
<td>https://women.ucsd.edu/</td>
</tr>
<tr>
<td>Pre-Med Advising: https://career.ucsd.edu/advising/pre-health-med/index.html</td>
<td></td>
<td>Undocumented Student Center</td>
</tr>
<tr>
<td>Office of Academic Support and Instructional Studies (OASIS)</td>
<td></td>
<td>https://uss.ucsd.edu/</td>
</tr>
<tr>
<td>https://oasis.ucsd.edu/</td>
<td></td>
<td>Black Resource Center</td>
</tr>
<tr>
<td>Office of Financial Aid and Scholarships (OFAS)</td>
<td></td>
<td>https://bre.ucsd.edu/</td>
</tr>
<tr>
<td>https://fas.ucsd.edu/</td>
<td></td>
<td>Raza Resource Centro</td>
</tr>
</tbody>
</table>

Bioengineering Student Organizations

- Biomedical Engineering Society - https://bmes.ucsd.edu/
- Engineering World Health - https://ewh.ucsd.edu/
- Gender Minorities in Bioengineering - https://gmbe.ucsd.edu/
- Undergraduate Bioinformatics Club - https://ubicucsd.github.io/