Space Adventure: The Next Wave of Biology Revolution Fueled by Spatial Omics Technologies

Rong Fan, Ph.D.

Professor

Department of Biomedical Engineering, Yale University

Department of Pathology, Yale School of Medicine

 


Seminar Information

Seminar Date
February 7, 2022 - 2:00 PM

Location
TBA

Rong Fan, Ph.D.

Abstract

Despite latest breakthroughs in single-cell sequencing that revealed cellular heterogeneity, differentiation, and interactions at an unprecedented level, the study of multicellular systems needs to be conducted in the native tissue context defined by spatially resolved molecular profiles in order to better understand the role of spatial heterogeneity in biological, physiological and pathological processes. In this talk, I will begin with discussing the emergence of a whole new field – spatial omics in the past years and then discussing a new technology platform called DBiT-seq – microfluidic Deterministic Barcoding in Tissue for spatial multi-omics sequencing – developed in our laboratory. It demonstrated, for the first time, co-mapping of whole transcriptome and a large panel of proteins with high spatial resolution directly on fixed tissue slides in a way fully compatible with clinical tissue specimen processing. First, I will show the application of DBiT-seq to spatial transcriptome and protein mapping of whole mouse embryo tissues that revealed all major tissue types in early organogenesis, brain microvascular networks, and a single-cell-layer of melanocytes lining an optical vesicle. Second, I will discuss spatial transcriptome mapping of FFPE tissue slides including archival human tumor specimens. Third, I will show the power of integration with single-cell RNA-seq for cell type annotation in relation to spatial location in tissue. Finally, I will discuss the latest progress of DBiT as a platform technology to enable spatial epigenome sequencing (spatial-ATAC-seq, spatial-CUT&Tag, etc) at cell level. The rise of NGS-based spatial omics is poised to fuel the next wave of scientific revolution in biological and biomedical research. Emerging opportunities and future perspectives will be discussed regarding the impact on biomarker discovery and therapeutic development.      

 

Speaker Bio

Dr. Rong Fan is Professor of Biomedical Engineering at Yale University and of Pathology at Yale School of Medicine. He received a B.S. in Applied Chemistry from University of Science and Technology in China, a Ph.D. in Chemistry from the University of California at Berkeley, and then completed his postdoctoral training at California Institute of Technology, prior to launching his own research laboratory at Yale University in 2010. His current interest is focused on developing microtechnologies for single-cell and spatial omics profiling in order to interrogate functional cellular heterogeneity and inter-cellular signaling network in human health and disease (e.g., cancer and autoimmunity). He co-founded IsoPlexis, Singleron Biotechnologies, and AtlasXomics. He served on the Scientific Advisory Board of Bio-Techne. He is the recipient of a number of awards including the National Cancer Institute’s Howard Temin Career Transition Award, the NSF CAREER Award, and the Packard Fellowship for Science and Engineering. He is a Fellow of the American Institute for Medical and Biological Engineering (AIMBE), elected a senior member of the National Academy of Inventors (NAI), and elected to the Connecticut Academy of Science and Engineering (CASE).